アメニティを追求した都市ヒートアイランドの緩和

白 進玖 遠山茂樹

1. はじめに

都市ヒートアイランド（Urban Heat Island、以下 UHI と略記）現象は人工排熱の増加、人工被覆の増加および自然空間の喪失という都市の人工化の過剰な進展から生ずる熱大気汚染であり、熱中症などの健康被害や二酸化炭素排出量の増加をはじめとする環境問題を惹起している。

近年、UHI現象は都市の住民に著しい不快感をもたらしているが、それにとどまらず、著しい高温化が住民の健康に悪影響を及ぼし、熱中症やそれによる死亡を招くなど都市の高温化と健康被害の相関関係が明らかにされている（例えば、中井、1993）。最近では、UHIによる都市熱環境問題の範囲は拡大し、その内容も高度化・複合化している。日本では、人口の7割以上を占める人々が都市で働き、生活している。人々が利便性を享受し、安心して暮らせるために、都市の「快適性（アメニティ amenity）の観点に立ったUHI現象への対応が迫られているのが現状である。

都市熱環境の問題は、従来、欧米でも注目されてきた。例えばドイツでは、UHIの緩和ならびに都市熱環境の改善を図るため、都市の縦を保全・創出・活用し、ゆとりと潤いのある緑豊かな都市を形成する都市計画がシュツットガルト（Stuttgart）をはじめとする幾つかの都市で実践されている（丸田、2001）。またアメリカでは、近年 UHI の緩和に関する研究が進んでおり（『アメリカ Heat Island Group 研究報告書』、2000）、リバブルプレイス（Livable Places、職・住・遊にわたる人間のすべての活動領域における都市の快適空間）の創造を試みた都市開発が注目され始めている。

日本においては、UHI対策は、地球温暖化対策の一環として、中央環境審議会地球環境部会制度化小委員会の答申（2002年1月）で明記されている。急速に高
2. 都市UHIの緩和方策

UHIの研究は、19世紀初頭に行われた、観測による都市とその周辺の2地点間気温差（今日のヒートアイランド強度に相当）の研究にはじまる。

当初、都市気温の観測はごく限られた観測点でのみ得られた測定値をもとにしたものであったが、自動車の利用が可能になると、都市の全域を網羅した観測ができるようになった。その結果、地上気温の局地的な水平分布を測定する観測が可能となり、多くの研究例が報告されるようになった（西沢，1977）。これまでのUHIの地上観測は、主に①定点観測による点と点の比較（都市内外の温度差）、②車（または自転車）での移動観測による線的な把握などの方法によるものであった。また、気球、航空機などによるUHI立体観測、人工衛星や航空機などからの赤外写真（熱映像）による熱分布面の把握などの方法もある。

先進国における都市気候の研究に関しては、従来、地理学、気象学、水文学などの理学系、造園学などの農学系、建築学などの工学系など、多くの分野でそれぞれに特有の視点から取り組みがなされてきた。これまでの研究により、UHIの形成要因として、次の5つが考えられている（図1はUHI現象に関わる要因の模式図である）。

１ 人間の代謝熱、および産業、交通、生活面におけるエネルギー消費に伴う
人工熱の発生

② 大気汚染物質による温室作用

③ 都市構成物質の変化（コンクリートやアスファルトの使用）による蒸発散熱の減少と熱容量の増加に伴う高温の持続

④ 風速の減少による顯熱交換の減少
（日射などにより地面や建物が加熱されると、周囲の大気中熱が放出される。この熱を顕熱と呼び、両者の温度差が大きければ大きいほど、また、大気の風速が大きければ大きいほど、顕熱は大きくなる。）

⑤ 都市表面の凹凸の増大に伴う日射吸収量と長波長放射収支量の増加
以上に挙げた諸要因の組み合わせによって、UHI は発生している。

図 1 UHI 現象にかかわる要因の模式図（尾島、2002 所収）

上述の諸要因（図 1 参照）を考慮し、都市高温の緩和方策（または UHI の緩和方策）を検討するために、都市の熱収支の改変を抑制し、都市の生活環境の改善を図る対策を講ずるとすれば、次のようなものが考えられるよう。

① 都市の人工排熱の削減（人工排熱の抑制）
・エネルギーの効率増進による消費エネルギーの削減（エネルギー消費機器の高効率化、設備の省エネルギー）
・人工排熱の有効利用（都市排熱の利用、未利用エネルギーの利用、再生エネルギー）
などである。

②地表面被覆の改善（人工被覆の反射率、保水性の改善）
・高断熱材や保水性建材の使用
・壁面の淡色化や窓ガラスの使用による建物の反射率の改善
・壁面緑化、屋上緑化などによる建物の保水性の改善
・地表の保水性の確保（緑化、水面の復元・創出）
などである。

③都市の構成・形態などの改善
風系、水系、地形等地域特性を活かした風の道1（図2）、水の道を積極的に利用することにより、熱輸送路の構築をはかり、エコエネルギー都市を実現し、循環型都市を形成する。

図2 季節風による風の道

1 風は一般に、三種類あげられる。一つは卓越風である。東京地方の場合には、夏に南、冬にはシベリア高気圧による北からの風が吹くが、これが卓越風である。二つ目には地形などによる局地風があげられる。都市が多く山、川、海に面していると、山谷風、海陸風や湖風などが吹く。三つ目には、パリ、ボンなどの都市で認められている郊外風である。市街地と郊外の間には気温差があることから、気圧差が生じ、郊外から市街地に向かって吹く風が発生するのである。このような風の状況を調べ、都市圏知に役立つことが重要である（日本気象学会編『生気象学の事典』、『緑と環境のはなし』編集委員会編『緑と環境のはなし』など参照）。
平成12年度環境省請負業報告書『ヒートアイランド現象の実体解析と対策のあり方について』によれば、これまで講じられてきた効果的な対策手法は、表1に整理されている通りである。実際、地方自治体がそれぞれの経済力や立地の特性、自然環境に応じてとるべきヒートアイランド対策は多様なものになると思われる。効率的な緩和対策としては様々なものを組み合わせ、バランスをみながら実施することが有効であろう。

表1 都市気温の上昇を制御する対策手法

<table>
<thead>
<tr>
<th>確認された効果的な対策手法</th>
<th>対象規模</th>
<th>期間</th>
<th>熱帯夜</th>
<th>昼間の高温化</th>
</tr>
</thead>
<tbody>
<tr>
<td>人工排熱の低減（削減と代替）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>① 空調システムの適切な運転など</td>
<td>建物</td>
<td>中短期</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>建物</td>
<td>短期</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>建物</td>
<td>中短期</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>② 建物の断熱、遮熱建材の適用（外断熱）</td>
<td>建物</td>
<td>中短期</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>③ 建物緑化、保水性建材の適用（外断熱）</td>
<td>建物</td>
<td>短期</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>④ 壁面の淡色化、高反射の屋根材</td>
<td>街区</td>
<td>中期</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>⑤ 建物排熱の地域レベルでの集中管理</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>人工被覆物の改善（顕熱輸送の削減と潜熱輸送の拡大）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>① 公園緑地などの保全・整備</td>
<td>区～都市</td>
<td>中長期</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>② 建物緑化、保水性建材の適用</td>
<td>建物</td>
<td>中短期</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>③ 小河川の開渠化や公園における水面の設置</td>
<td>区～都市</td>
<td>中長期</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>都市形態の改善</td>
<td>都市</td>
<td>長期</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

効果の特性：A効果大、B効果中、C効果小、D逆効果

（平成12年度環境省請負業報告書『ヒートアイランド現象の実体解析と対策のあり方について』より作成）
近年、日本においては、UHIに関する政府の取り組みも活発化してきており、例えば、「総合規制改革会議答申（平成13年12月11日）」において、重点6分野の一つである「環境」項目の中でヒートアイランドが取り上げられている。これに関連し、将来の総合的な対策を目的とした大綱策定が検討され、そのための省庁連絡会議も設置された。

それゆえ、今後はヒートアイランド抑制対策として「ヒートアイランド防止計画」を体系化し、それにもとづいて当該対策を推進することが望まれる。さらに、リバブルな都市環境を提供するため、アメニティの創造に関連する施策として、地域環境計画（環境基本計画など）、都市総合計画、環境アセスメント、地域新エネルギービジョンの中にUHI対策を位置付けることも必要であろう。

3. アメニティ保全と創造

（1）アメニティとは

「アメニティ」という概念は、もともとイギリスを中心に西欧社会で18世紀以来形成されてきた都市計画の中心的な思想である。それは思想的には、環境衛生、快適さと生活環境美、そして保存という三つの相を持つ複合概念であるとされ（図3を参照）、イギリスの都市・田園計画の基本概念の一つとなっている。

オックスフォード大辞典（OED）によると、アメニティは快適であるという質「一場所、状況、局面、気候など−」と規定され、また、イギリスの都市計画の専門家デイヴィット・スミス氏によれば、アメニティは、快適さ、喜ばしさpleasantnessと同義語であって、快適性を意味するラテン語のアモエニタス(amoenitas)から派生し、さらに、アマーレ(are 愛する)という語源にまで遡ることができる（デイヴィット・L・スミス著、川向正人訳『アメニティと都市計画』、1977）。さらに、イギリスでは、すでに15世紀には生活語として使用されていたという指摘もある。

イギリスの都市計画家であったウィリアム・ホルフォードは、アメニティについて次のように述べている。「アメニティとは、単に一つの質をいうのではなく、価値の全体的カタログである。それは、芸術家が目し、建築家がデザイ
アメニティの概念が明確な形で日本にもたらされたのは、1977年（昭和52）のOECD（経済協力開発機構：経済成長、低開発国援助、通商増大の三つを主な目的として1961年に発足）対日本環境政策レビューによってであった。OECDが日本の環境事情を調査し、日本の環境の質の悪化が改善されていないことを報告書の中で指摘したのである。これを契機に、環境庁（現環境省）は、快適環境づくりを環境行政上の重要課題として位置付け、同年学識経験者からなる「快適な環境懇談会」を設けて、快適環境づくりについて様々な角度から検討を行った。その

3 1976年、OECDが日本を対象に審査した日本の環境政策レビューの報告書は「日本は数多くの公害防除の闘いには勝ったが、環境の質、あるいはアメニティと呼ばれるものを高める戦争では勝利をおさめていない」と結論づけている（AMR編『アメニティを考える』を参照）。
結果、快適環境づくりを展開しようとする市町村区に対し、その計画策定を補助する「アメニティタウン計画」事業が1984年より開始された。

現在は本事業の結果を踏まえ、各都道府県がより広域的な環境問題を考慮したうえで快適環境に対する基本的な考え方を打ち出し、広域の快適環境の整備に力を注いでいる。同時に、管下の市町村に対しては、快適環境づくりの基本方針である「アメニティ・マスタープラン」の策定に対する補助制度を実施している。また、国土交通省も「21世紀の国土のグランドデザイン」のなかで施策の方向性を打切っている。このように、国の施策にアメニティ概念が多用されている。しかし一方で、国の環境政策は、実際にはアメニティ思想に反するものだとの批判もなされている。

（２）都市アメニティの保全と創造

アメニティを市民生活の快適さにとって必要な、環境の質の保全を総体的に表す言葉としてとらえれば、アメニティ概念は公害・環境問題の基礎にあるものであり、自然、歴史的文脈、街並み、風景、地域文化、コミュニティの連帯、人情、地域的公共サービス（教育、医療、福祉、犯罪防止など）、交通の利便性などは、すべてアメニティの問題ということになる。都市環境のアメニティが著しく重要になっている現代においては、日射、風、温度などの気候的因子を都市計画に取り入れる必要性が増大している。

イギリスをはじめとする西欧社会では、アメニティの思想は、産業革命以後の歴史の過程のなかで形成されてきた経緯がある。都市開発においては、なによりもまず住民のアメニティ感覚を重視し、それに逆らうような行為を自覚することが大切である。一方、住民もまた、もともと開発側に住民のアメニティを侵害するような動きをみせたならば、決然としてこれに異議を申し立てて姿勢が必要であろう。

「世界の環境首都」といわれるドイツのフライブルク市は、官民一体となって理想的ともいえる環境対策をソフトとハードの両面で実施している。例えば、当市では冬に雪が降った時でも、道路に塩を撒くことは禁止されている。この禁止措置は、市民からの強い要望によって採られるようになった自然型緑地対策の一つである（資源リサイクル推進協議会編、2000）。
また、アメニティの思想は、住民生活にとって根源的価値をもつものを重視し、国民共通の価値観にまで成長している。例えば、村の古木に歴史的価値を認め、それを大切に保存するといった具合である。さらに、景観は公共のものであり、環境を構成する重要な要素であるという考え方もアメニティ思想に根ざしている。そうした公共の空間に、私益追求のために広告物をたてることは、企業が景観を独占し、破壊することを意味する。こうしたアメニティに根ざした価値観と伝統的風土に支えられ、ある環境経済学者は、アメニティの公平をはかるためには市場原理を規制する公共的介入が必要である、と述べている。

アメニティが「快適さ・楽しみ」あるいは「快適な環境」と訳されたことについては、異論がないわけではない。イギリスのウィリアム・ホルフォード卿が述べた「しかるべきものが、しかるべきところにある」(the right thing in the right place) という表現の中の「しかるべき」とは何かという問題は、それにこそ「快適さ」から判断しなければならない。都市のアメニティとは要するに「配置」の問題なのであるが、配置が適切であるかどうかは、アメニティそれに自体からの判断が必要であり、美の要素もある特別な配置によって生ずる。それを美と判断するのは人間の主観である。アメニティの創造は、表面的な美観の追求にとどまらず、配置によって環境の質を改善し、快適な環境を追求することにほかならない。

既述のように、わが国でアメニティという言葉が一挙に浮上したのは、OECDの審査に基づく指摘によるものであった。日本の場合、審査の結論では、公害防止とアメニティとが段階的に分類され、受け取られてしまったのである。今日、環境問題はますます多様なひろがりをみせている。都市環境問題についてもその範囲は拡大し、内容も高度化・複合化している。それゆえ、今日、都市熱環境問題の総合的な解決を図っていくためには、①熱汚染防止、②自然環境との共生、そして、これらを前提にしてはじめて成り立つ③アメニティの保全と創造、という3つの複合的な課題を意識的にとらえ、それらを統合的に結びつけた政策体系を構築していくことが焦眉の急となっている。欧米では、都市熱環境汚染の緩和対策は、アメニティの增大が強く要請されている現実を踏まえ、進捗されている。次節においては、その事例を紹介しよう。
4. アメニティを追求したUHI緩和対策

（1）公園・緑地の増設について

近年、日本でも都市気候保全に配慮した都市計画上の施策を都市の総合基本計画に位置づける自治体（例えば、船橋市、名古屋市）が出てきており、その必要性に関する検討も行われている（森山，1997，一ノ瀬，1999など）。前節の表1に示した「都市気温の上昇を制御する対策手法」をみてみると、都市UHIを考慮した都市計画においては、都市内の緑地や水面の量について配慮する必要があることが理解される。現在、市街地に点在する公園緑地は多くの緑によって覆われているため、UHI現象の軽減に有効であることが明らかにされている。

例えば、丸田（2001）の研究によれば、一般には約10ha以上の公園緑地で、密度の濃い緑や水面に覆われていると、夏季には公園緑地と市街地との間に3〜4℃の気温差が生じ、清浄で低温性の空気が周辺市街地に及ぶ。さらに、日中は公園緑地の低温性の空気が、一般風の風下側市街地約200mにわたって及び、市街地を冷却することが指摘されている。

日本の多くの都市では都市整備が進行しており、市街地内の緑の減少に対して、公園などの整備が進み、緑被率の減少防止が図られている。さらに、名古屋の事例研究では、公園内の過剰な人工構造物や舗装、葉量の少ない低木の植栽などは、効果に乏しいものであることが指摘されている（平成12年度環境省請負業報告書『ヒートアイランド現象の実体解析と対策のあり方について』）。ここから窺えるように、自然土壌のもつ透水性や保水性の保持が必要とされており、また木々の葉の持つ気候緩和効果から緑の量が重要となっている。

さらに、「公園と自然についての住民アンケート調査報告書（1995）」（平本編、2002所収）によると、自然とのふれあいについては、東京の住民の37％が公園に自然とのふれあいを感じていた。また、居住地域の公園を自然回復の拠点として整備することについて、賛成であると答えた人が82.5％にのぼり、さらに賛成する人々の多くは「鳥や草木などの生態を自然のまま鑑賞、観察できる公園」を希望していた。一方、整備された庭園を望む人々は11％にすぎず、都市の人々の意識の中では、整然と整備され管理された公園は、それほど好感がもたれていないことがわかる。
このような調査にみられるように、都市の緑に多くの人々が求めるものは、自然の風景から得られる楽しみや、自然の中で過ごすことによって得られる休息であると思われる。つまり、公園は市民の憩いの場で、しかも楽しめる場所であることが最も望ましいのである。アメリカの多くの公園では、市民や観光客が楽しめる施設が増え、無料のイベントを定期的に開催している。都市化の進展により、かつて身のまわりにあった空地や雑木林、小川がますます失われつつある。都市の緑に人々が求めるのは、自然の風景であり、憩い・遊びの場であり、その具体的なもののが日々訪れても飽きることのない公園である（例を挙げれば、機能4はアメリカ・シカゴの都心にあるグランドパークの風景である）。都市UHIの緩和のため、緑地公園を配置する際には、地域の人々が公園の緑に求めるものを改めて見直す必要があるだろう。高齢・少子化社会の到来が告げられている今日、その見直しの時期が迫っているのである。

図4 グランドパーク：シカゴ市民の憩いの場

グランドパークはシカゴ都心部の一等地ながら広々とした緑地で、フランス庭園を模して造られた。湖岸の景観を守るため、公園敷地内にはシカゴ美術館以外にビルを建ててはならないことになっている。

また、都市形態改善のため、公園や緑地の増設に際しては、地域の特性を活かす必要がある。最近の環境意識の高まりのなかで、欧米の多くの都市では、施行されている建設法の中に環境保全、自然管理、気候などに配慮した項目がある。とくに、環境先進国ドイツでは、都市計画の策定において、郊外から中心市街地に吹き込む冷気流は「風の道」（ドイツ語：Kaltluftabfluβ, 英語：wind pass）として書き込まれ、市街地の通風対策を考えることで、重点的に保全すべき地表面が一目でわかる仕組みになっている。さらに内陸都市を対象として、夏季の暑熱
緩和と冬季の大気汚染負荷軽減を目的とした都市計画のための気候解析（Klimaanalyse für die Stadtplanung）が広く行われている。とくに有名な都市は、カールスルーア、ミュンヘン、シュツットガルト、ビースバーデンなどである。例えば、人口30万人の南ドイツの都市カールスルーア(Karlsruhe)では、市街地を冷却化したり、清浄な空気を都心部に運ぶために、夏季の主風向や局地風の調査を行い、それとの関連で緑地配置計画を策定している。そして、郊外の樹林地化を促進する一方、風道にあった緑化を行なっている（丸田，1994）。また、アメリカの五大湖地域では、湖風を利用するため、風道形成を考慮した緑化を積極的に行っている（図5）。

図5 湖風の風道、および風道に沿った緑化（マディソン、米国ウィスコンシン州）

日本では、丸田の研究（2001）によれば、住宅系市街地（東京都杉並区）の場合、夏季の晴天時、緑被地率が10%増加することにより、最高気温は0.32℃±0.09℃、最低気温は0.25℃±0.04℃の割合で低減し、緑被地率を高めると、UHI現象が軽減することが確認された。

一方、人口密度が高い都市の中心部においては、緑化を促進する方法として、屋上緑化や、壁面緑化が考えられる。東京（日本橋）におけるシミュレーションにより、商業地区における緑化を促進する場合、屋上緑化の方が壁面緑化より緑被面積が大きくなる。昼間（13時の計算結果）は、屋上緑化の方が気温の上昇の緩和効果は高くなるが、夜間（20時の計算結果）は、壁面緑化の方が気温上昇の緩和効果は高くなる。また、高密集住宅地区（東京都文京区）では、緑化が促進（緑被率が30%）されると、昼間は気温上昇は緩和されるが、夜間はその緩和効
果は現れない。また、工業地区の場合、緑化の促進による気温上昇の緩和効果は弱いが、緑化率が同じ条件であれば、集中緑化（敷地内の1箇所に集中的に緑化）の方が、分散型緑化（建物を取り囲むように緑化）よりも高い効果が得られる（平成12年度環境省請負業報告書『ヒートアイランド現象の実体解析と対策のあり方について』）。このような合理的な都市整備、都市計画が実施されれば、UHIによる都市問題の解決に大きく貢献することが期待できる。

国民の価値観が多様化する現在社会においては、緑化景観に潤いやゆとり、心の豊かさを求める傾向が強くなっている。都市公園の整備や道路、河川、その他の公共施設、さらに住宅、事業所、工場などの緑化には、その「まち」らしさと都市の歴史・文化と共に、都市の美観も求められるようになった。緑化を促進する際には、緑を景観計画の観点からとらえることが必要である。例えば、高木、中木、低木、地被類など植物については、その階層と、周辺からどのように見えるか、その「見え方」にも配慮する必要がある。花壇について言えば、一年を通じて、季節毎に順番に咲き揃うような植栽が望ましい。

（2）身近な緑化と緑の空間拡充

都市気候を考慮した都市計画においては、身近な緑化と緑環境整備のカギは住宅区内および街路整備にある。欧米の街を歩くと、個々のスペースの緑の量が多く、質的にも多様であることに気づく。とくに、日本の街と比べて欧米では、景観性を重視し、街路緑化を人の目線でおこなっている印象が強い。図6と図7はシカゴの街の一般風景である。人工的な構造物で占められた共有空間に、豊かな緑が創出されている。さらに多様な園芸的植栽や自然生態的な環境整備を行い、より安全で快適な公共空間が現出されている。

図6 シカゴ郊外の街路樹
図7 シカゴ市街地の緑化

欧米の都市では、緑の空間拡充の優れた事例が極めて多い。建物のまわりの緑を充実させる方法としては、壁面緑化が積極的に進められている。一例を挙げれば、図8と図9は、ビルの壁に応じた壁面緑化的風景である。緑の少ない地区では単に緑の増大、修景だけではなく、建物壁面の風雨・日射からの保護、季節に合わせた温熱や冷却の機能、生物の生息空間、さらにはUHIの緩和と多様な役割を果たし、効果を発揮している。丸田ら（1994）は東京都港区の9階建ビルの壁面緑化について調査し、その結果、夏季の晴天時には96％の日射量が遮蔽されることや、最大3.7℃の気温の低減効果があることを突きとめた。ちなみに、この事例の壁面緑化では、壁面は西日防止を目的に、ムベ、シクノニア、ツキヌキニンドウ、スイカズラ、ナツツサやテイカカズラで覆われた。福岡市では「緑の段階（ステップガーデン）」という形で建物緑化を実現している（図10）。
また、屋根を緑化することで、屋根の表面温度の上昇は一層改善できる。現在、東京都をはじめとする大きな自治体では、一定規模以上の建物に屋上緑化が義務付けられている。東京都では2000年4月から都内で新しくビルを建設する際に、屋上などに20％以上の緑地を設けるように指導している。対象となるビルは、民間ビルの場合は敷地面積が1000 m²以上、公共ビルの場合は250 m²以上ものである。また、大阪、神戸などの大都市では、屋上緑化技術の進歩に伴い（例えば植物への給水、緑化資材など）、多様な表情を見せる「垂直の庭園」が誕生し、緑と人と建物が有機的に共生している。最近では「緑のカーテン」という提案も聞かれる。

植物は外部遮蔽物として使用することによって、外窓からの日射熱の大部分をシャットアウトすることができる。しかも、これは低コストで実現可能なのである。都市熱環境を改善しながら、快適な生活環境空間を創出し、生活を豊かにする工夫は、アメニティを追求したUHI緩和を有効に実践する秘訣である。さらに、一般に都市の緑地構造は、都心部ほど緑地が乏しく、縁辺部に散在する構造を有している。これに対して、屋上空間および建造物に付帯した空間は、熱環境恶化の進む都市の中心部ほど、大量に存在することになり、UHIの緩和、都市環境の改善の観点からも、建造物緑化は大きな効果を発揮するものと思われる。

例えば、笹倉の研究（平本編著所収，2002）によれば、日本の主要都市における緑・緑地である都市公園について、市街地に対する面積率を見ると、せいぜい3％程度にすぎない。これは欧米の主要都市の10-20％台に比べて大きく下回っており、貧弱な緑のストックの現状と稠密な都市構造が浮き彫りにされている。し
かし、屋上・壁面空間と種々の建築条件を考慮し、実際に緑化の可能性がある面積量を試算してみると、市街地の面積比に単純換算しても、合計値で約18％（そのうち屋上だけでも約7％）の緑化可能量となる。それゆえ、都市における屋上及び壁面を中心とした緑化は、量的にみて効果が大であることがわかる。

（3）水辺づくり

同様に、アメニティを考慮した都市における水辺づくりにおいても、都市のなかに豊かな自然が確保されていることが肝要である。河川や池や湿地や雑木林などには固有の生物群集が存在しているゆえに、多様な生物の生息環境をつくる必要がある。従来の川づくりは、ともすれば治水・利水機能が優先されがちであったが、今日では自然豊かな親しみやすい川づくりが求められている。

また、河川のコンクリート護岸や建物敷地の不透水化など不透水面積の拡大は、気温を上昇させる方向に作用することも指摘されている（山下、1986）。それゆえ、戦後は急激な市街化に伴って従来の自然豊かな川からコンクリートブロック護岸の整然とした川に変わり変えられたが、近年になって本来の川の姿を取り戻し、自然な水辺を創出する工夫がなされている。日本の各地で、川辺に桜堤を整備し、美しい水辺空間を復活させようという試みも行われている。河川も見直しの時期に来ているのである。

5．おわりに

UHIは、都市特有の熱汚染現象であり、近年多くの大都市で認められる世界共通の現象である。地球温暖化による気温上昇が100年で0.6〜0.7℃であるのに対し、UHI現象によるそれは、この20年間で0.4〜0.6℃とはるかに早いペースで進んでいる。東京ではこの100年間に気温が2.8℃上昇した（毎日新聞、2002年8月8日付）。環境、国土交通、経済産業の3省は、2002年9月にUHI対策会議を設けることを決定した。日本では、今後UHI対策として、屋上緑化、都市公園整備、保水性道路整備など様々な技術・施策が導入されていくものと思われる。

本格的な高齢社会の到来を迎えている21世紀の日本では、すべての国民にとっ
て暮らしやすい生活環境をつくることが強く要請されている。本稿では、欧米の事例研究を踏まえて、公害の制御・防止とアメニティの創造との連携を視野に入れ、かかる観点からアメニティを追求したUHI対策のあり方を提案した。本研究で得られた結論を、まとめれば次のようになる。

① 都市UHI緩和のため、公園や緑地の設置が強く要望されている。緑地や公園を配置する際には、地域の人々が公園の緑に求めるものを改めて見直す必要がある。

② 建物の配置を変えて「風の道」をつくり、エネルギーや物質の有効利用を徹底させるなどして、循環型の都市形成、都市改造に取り組む必要がある。その際には、多様な園芸的植栽や自然生態的な環境整備を行い、より安全で快適な公共空間の創出に努めるべきである。

③ 人工的な構造物で占められた共有空間、とくに都市の中心部において、緑の充実・創出を工夫する必要性が高まっている。

④ 自然な水辺、しかも美しい水辺空間を復活させる。

快適な都市環境の保護・創出は、行政、専門家、事業者ならびに地域住民の共同作業といえるであろう。UHIを含む都市環境問題の解決に際しては、多様化する住民のニーズや環境に配慮しつつ、ゆとりある魅力的な空間づくりを念頭に置く必要がある。それゆえ、地域住民も主体的に行動し、都市の快適性という視点にもとづいて都市環境問題に積極的に関与してゆくことが望まれる。

現在、都市化の進展が著しいアジア地域の大都市においても、今後UHI現象が深刻化することが懸念されている。本稿では公害の制御・防止とアメニティの創造との連携を視野に入れてつつ、UHI対策のあり方をさぐってみたが、得られた上述の結論はアジア地域の大都市におけるUHI対策にも活用できるものと考えられる。

（本稿の掲載写真は、すべて著者の撮影によるものである。）
参考文献

(1) 『アメリカ Heat Island Group(Leader: Hashem Akbari, University of California, Berkeley)研究報告書』 (http://eetd.lbl.gov/HeatIsland/PUBS/)
(3) AMR 編 (1989): 『アメニティを考える』, 未来社.
(6) 資源リサイクル推進協議会編 (2000): 『徹底紹介「環境首都」フライブルク』, 中央法規出版社, 89.
(7) 社団法人環境情報科学センター & ヒートアイランド実態解析調査検討委員会編 (2001): 『平成12年度環境省請負業報告書 ヒートアイランド現象の実体解析と対策のあり方について』.