A note on almost contact Riemannian 3-manifolds

Jun-ichi Inoguchi *
(Received May 21, 2009)

Abstract

We investigate curvatures of normal almost contact Riemannian 3-manifolds. In particular, we show that Kenmotsu 3-manifolds of constant scalar curvature are of constant curvature \(-1\).

Introduction

In [6], K. Kenmotsu introduced a class of almost contact Riemannian manifolds. The almost contact Riemannian manifolds introduced by Kenmotsu are called Kenmotsu manifolds. Kenmotsu showed that locally symmetric Kenmotsu manifolds are of constant curvature \(-1\). This fact means that local symmetry is a strong restriction for Kenmotsu manifolds.

In stead of local symmetry, U. C. De [4] studied Kenmotsu manifolds \(M = (M; \varphi, \xi, \eta, g)\) satisfying

\[\varphi^2 \{(\nabla_W R)(X, Y) Z\} = 0 \]

for all \(X, Y, Z, W \in \mathfrak{X}(M)\) orthogonal to \(\xi\). He showed that if \(M\) satisfies (1) for all vector fields on \(M\), then \(M\) is Einstein. In dimension 3, De showed that a Kenmotsu 3-manifold \(M\) satisfies (1) for all vector fields orthogonal to \(\xi\) if and only if \(M\) is of constant scalar curvature.

In this paper we point out that Kenmotsu 3-manifolds of constant scalar curvature are of constant curvature \(-1\). Thus De’s condition on Kenmotsu 3-manifolds implies local symmetry.

1 Preliminaries

Let \((M, g)\) be a Riemannian manifold with Levi-Civita connection \(\nabla\). Denote by \(R\) the Riemannian curvature of \(M\):

\[R(X, Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}, \quad X, Y \in \mathfrak{X}(M). \]

*Department of Mathematical Sciences, Faculty of Science, Yamagata University
Here $\mathfrak{X}(M)$ is the Lie algebra of all vector fields on M. A tensor field F of type $(1,3)$;

$$F : \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$$

is said to be curvature-like provided that F has the symmetric properties of R.

For example,

$$(X \wedge Y)Z = g(Y, Z)X - g(Z, X)Y, \quad X, Y \in \mathfrak{X}(M)$$

defines a curvature-like tensor field on M. Note that the curvature R of a Riemannian manifold (M, g) of constant curvature c satisfies the formula $R(X, Y) = c(X \wedge Y)$.

A Riemannian manifold (M, g) is said to be locally symmetric if $\nabla R = 0$. Clearly every Riemannian manifold of constant curvature is locally symmetric.

In dimension 3, the Riemannian curvature R is determined by the Ricci tensor. In fact, R is expressed as

$$R(X, Y)Z = \rho(Y, Z)X - \rho(Z, X)Y + g(Y, Z)SX - g(Z, X)SY - \frac{s}{2}(X \wedge Y)Z,$$

where ρ is the Ricci tensor, S is the corresponding Ricci operator and s is the scalar curvature of M, respectively.

2 Almost contact Riemannian manifolds

Let M be an odd-dimensional manifold. An almost contact structure on M is a quadruple of tensor fields (φ, ξ, η, g), where φ is an endomorphism field, ξ is a vector field, η is a one form and g is a Riemannian metric, respectively, such that

$$\varphi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1,$$

$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y), \quad X, Y \in \mathfrak{X}(M).$$

An $(2n + 1)$-dimensional manifold together with an almost contact structure is called an almost contact Riemannian manifold (or almost contact manifold). The fundamental 2-form Φ of M is defined by

$$\Phi(X, Y) = g(X, \varphi Y), \quad X, Y \in \mathfrak{X}(M).$$

If an almost contact Riemannian manifold $(M; \varphi, \xi, \eta, g)$ satisfies the condition:

$$\rho = ag + b\eta \otimes \eta$$

for some functions a and b, then M is said to be η-Einstein.

The formulae (3) and (6) imply the following result.
Proposition 2.1 Let M be an η-Einstein almost contact Riemannian 3-manifold. Then its Riemannian curvature R is given by

$$R(X,Y)Z = \left(2a - s\right)(X \wedge Y)Z - [(b\xi) \wedge \{(X \wedge Y)\xi\}]Z.$$

An almost contact Riemannian manifold M is said to be normal if it satisfies $[\varphi,\varphi] + 2d\eta \otimes \xi = 0$, where $[\varphi,\varphi]$ is the Nijenhuis torsion of φ.

Proposition 2.2 ([7]) An almost contact Riemannian 3-manifold is normal if and only if there exist functions α and β such that

$$\nabla_X \varphi Y = \alpha \{g(X,Y)\xi - \eta(Y)X\} + \beta \{g(\varphi X,Y)\xi - \eta(Y)\varphi X\}.$$

We call the pair (α, β) of functions the type of a normal almost contact Riemannian 3-manifold M. More generally, an almost contact manifold of dimension $2n + 1 \geq 3$ is said to be trans-Sasakian if there exist functions α and β such that (8) (see [9]).

In particular, a normal almost contact Riemannian 3-manifold is said to be a

- Sasakian manifold if $(\alpha, \beta) = (1, 0),$
- Kenmotsu manifold if $(\alpha, \beta) = (0, 1),$
- coKähler manifold if $(\alpha, \beta) = (0, 0).$

Let $(M; \varphi, \xi, \eta, g)$ be a normal almost contact Riemannian 3-manifold. Then from (4) and (8), we have

$$\nabla_X \xi = -\alpha \varphi X + \beta \{X - \eta(X)\xi\}, \ X, Y \in \mathfrak{X}(M).$$

In particular we have $\nabla_\xi \xi = 0$. Hence on trans-Sasakian manifolds, integral curves (trajectories) of ξ are geodesics.

Next, we consider η-Einstein normal almost contact Riemannian 3-manifolds.

Proposition 2.3 ([3]) Let M be a normal almost contact Riemannian 3-manifold of type (α, β). Then M is η-Einstein if and only if

$$g(\nabla\varphi - \varphi\nabla \alpha, X) = 0$$

for all $X \in \mathfrak{X}(M)$ orthogonal to ξ. In this case,

$$\rho = \left\{\frac{s}{2} + d\beta(\xi) - (\alpha^2 - \beta^2)\right\}g + \left\{-\frac{s}{2} - 3d\beta(\xi) + 3(\alpha^2 - \beta^2)\right\}\eta \otimes \eta.$$

Corollary 2.1 The Riemannian curvature of a Sasakian 3-manifold is given by

$$R(X,Y)Z = \frac{s - 4}{2}(X \wedge Y)Z + \frac{s - 6}{2}[\xi \wedge \{(X \wedge Y)\xi\}]Z.$$

A note on almost contact Riemannian 3-manifolds
Corollary 2.2 The Riemannian curvature of a Kenmotsu 3-manifold is given by
\[R(X,Y)Z = \frac{s + 4}{2} (X \wedge Y)Z + \frac{s + 6}{2} [\xi \wedge ((X \wedge Y)\xi)]Z. \]

Corollary 2.3 The Riemannian curvature of a coKähler 3-manifold is given by
\[R(X,Y)Z = \frac{s}{2} [\xi \wedge ((X \wedge Y)\xi)]Z. \]

3 Kenmotsu 3-manifolds

Let \((N,h,J)\) be a Riemannian 2-manifold together with the compatible orthogonal complex structure \(J\). Take a direct product \(M = E^1(t) \times N\) of real line \(E^1(t)\) and \(N\). We denote \(\pi\) and \(\sigma\) the natural projections onto the first and second factors,
\[\pi : M \to E^1, \quad \sigma : M \to N, \]
respectively. On the direct product \(M\), we equip a Riemannian metric \(g\) defined by
\[g = dt^2 + f(t)^2 \pi^* h. \]
Here \(f\) is a positive function on \(E^1(t)\). The resulting Riemannian manifold \((M,g)\) is denoted by \(E^1 \times_f N\) and called the warped product with base \(E^1\) and fibre \(N\). The function \(f\) is called the warping function.

On the warped product \(M = E^1 \times_f N\), we define the vector field \(\xi\) by \(\xi = \frac{\partial}{\partial t}\). Then the Levi-Civita connection \(\nabla\) of \(M\) is given by (cf. [8]):
\[\nabla_X Y^v = (\nabla_X Y)^v - \frac{1}{f} g(X^v,Y^v) f' \xi, \]
\[\nabla_X \xi^v = \nabla_X^v \xi = \frac{f'}{f} X^v, \]
\[\nabla_\xi \xi = 0. \]
Here the superscript \(v\) means the vertical lift operation of vector fields from \(N\) to \(M\). Define \(\varphi\) by \(\varphi X = (J(\sigma* X))^v\). Then we get
\[\nabla_X \xi = \beta(X - \eta(X)\xi), \]
\[(\nabla_X \varphi)Y = \beta\{g(\varphi X,Y) - \eta(Y)\varphi X\}, \quad \beta = f'/f. \]
Hence \(M = E^1 \times_f N\) is a normal almost contact Riemannian 3-manifold of type \((0,\beta)\). In particular \(E^1 \times_f N\) is a Kenmotsu manifold if and only if \(f(t) = ce^t\) for some positive constant \(c\). Take a local orthonormal frame field \(\{\bar{e}_1, \bar{e}_2\}\) of \((N,h)\) such that \(\bar{e}_2 = J\bar{e}_1\). Then we obtain a local orthonormal frame field \(\{e_1,e_2,e_3\}\) by
\[e_1 = \frac{1}{f} \bar{e}_1, \quad e_2 = \frac{1}{f} \bar{e}_2 = \varphi e_1, \quad e_3 = \xi. \]
Then sectional curvatures of M are given by
\[K(e_1 \wedge e_2) = \frac{1}{f^2} \{ \kappa - (f')^2 \}, \quad K(e_1 \wedge e_3) = K(e_2 \wedge e_3) = -\frac{f''}{f}, \]
where κ is the Gaussian curvature of N. The Ricci tensor components $\rho_{ij} = \rho(e_i, e_j)$ are given by
\[\rho_{11} = \rho_{22} = \frac{\kappa}{f^2} - \frac{f''}{f} - \left(\frac{f'}{f} \right)^2, \quad \rho_{33} = \frac{2f''}{f}. \]

The local structure of Kenmotsu manifolds is described as follows.

Lemma 3.1 ([6]) A Kenmotsu 3-manifold M is locally isomorphic to a warped product $I \times_f N$ whose base $I \subset \mathbb{E}^1(t)$ is an open interval, N is a surface and warping function $f(t) = ce^t$, $c > 0$. The structure vector field is $\xi = \partial/\partial t$.

Proposition 3.1 A Kenmotsu 3-manifold is of constant scalar curvature if and only if M is of constant curvature -1.

(Proof.) For every point $p \in M$, there exists a neighbourhood U_p of p such that U_p is a warped product $(-\epsilon, \epsilon) \times_f N$ of an open interval $(-\epsilon, \epsilon)$ and a Riemannian 2-manifold of Gaussian curvature κ with warping function $f(t) = ce^t$. The scalar curvature s over U_p is computed as
\[s|_{U_p} = -6 + 2\kappa c^{-2}e^{-2t}. \]
Thus the differential ds is computed as
\[\frac{1}{2} ds = c^{-2}e^{-2t}d\kappa - 2\kappa c^{-2}e^{-2t}dt. \]
Hence $ds = 0$ if and only if $\kappa = 0$. This implies that U_p is of constant curvature -1. \(\blacksquare\)

Corollary 3.1 A Kenmotsu 3-manifold satisfies the condition (1) for all $X, Y, Z, W \in \mathfrak{X}(M)$ orthogonal to ξ if and only if M is locally symmetric.

(Proof.) De [4] showed that M satisfies (1) for all $X, Y, Z, W \in \mathfrak{X}(M)$ orthogonal to ξ if and only if M is of constant scalar curvature. As we have seen above, M is of constant scalar curvature if and only if M is of constant curvature -1. \(\blacksquare\)

Note that all the examples of Kenmotsu 3-manifold exhibited in [4, Example 5.1, 5.2, 5.3] are of constant curvature -1.

A note on almost contact Riemannian 3-manifolds
References

